Epithelial plasticity: a common theme in embryonic and cancer cells.

نویسنده

  • M Angela Nieto
چکیده

During embryonic development, many cells are born far from their final destination and must travel long distances. To become motile and invasive, embryonic epithelial cells undergo a process of mesenchymal conversion known as epithelial-to-mesenchymal transition (EMT). Likewise, EMT can be seen in cancer cells as they leave the primary tumor and disseminate to other parts of the body to colonize distant organs and form metastases. In addition, through the reverse process (mesenchymal-to-epithelial transition), both normal and carcinoma cells revert to the epithelial phenotype to, respectively, differentiate into organs or form secondary tumors. The parallels in phenotypic plasticity in normal morphogenesis and cancer highlight the importance of studying the embryo to understand tumor progression and to aid in the design of improved therapeutic strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of cytotoxic effects of condition medium from amniotic epithelial cells on cancer cell lines HeLa and MDA-MB-231

Introduction: Amniotic membrane, the innermost layer of extra-embryonic tissue, contains mesenchymal and epithelial stem cells. The amniotic mesenchymal cells have the capability of inhibition of growth of cancer cells. In this research, the effects of amniotic epithelial cells on the viability of cancer cells and the role of apoptosis in this procedure were evaluated. Methods: Amniotic mem...

متن کامل

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

Identification of Malignant Cells in Serous Fluids Using a Panel of Monoclonal Cytokeratin Antibodies, Epithelial Membrane Antigen(EMA) , Carcino Embryonic Antigen (CEA)

Abstract Background and Objective: Identification of malignant cells and the type of malignancy in Effusionsis very important. The main aim of this study was to differentiate between reactive mesothelial cells and malignant cells and to determine the type of the tumor cells in effusions with the aid of tumor markers Creatine Kinase (CK), EMA and CEA. Material and Methods: Forty serous flui...

متن کامل

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 342 6159  شماره 

صفحات  -

تاریخ انتشار 2013